
117A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-Window Data Streams

A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for
Sliding-Window Data Streams

Remous-Aris Koutsiamanis, Pavlos S. Efraimidis
Department of Electrical and Computer Engineering, Democritus University of Thrace, Greece

{akoutsia,pefraimi}@ee.duth.gr

Abstract

In this work we address the problem of identifying
and limiting the heaviest hitters in a sliding-window data
stream. We propose the first, to our knowledge, exact (i.e.,
not approximate) algorithm which achieves O(1) with
high probability time complexity in both update and query
operations. Additionally, it tracks the first and last item
of any itemset in the window in O(1) time complexity as
well as the lightest hitters with no additional computational
costs. These properties allow us to efficiently implement
a mechanism to limit the heaviest hitters by evicting them
from or not allowing them in the window. We describe
the algorithms and data structure which implement
this functionality, we explain how they can be used to
accomplish the goal of limiting the heaviest hitters and
perform experiments to produce quantitative results to
support our theoretical arguments.

Keywords:	 Mining, Heaviest hitters, Data streams, Sliding
window, On-Line algorithms.

1 Introduction

In this paper, we aim to combine a novel algorithm
for identifying the heaviest hitters in a sliding-window
data stream with the ability to track the items in that
sliding window in order to implement the fair rate-limiting
mechanism described in [1-2]. This results in a constant
time algorithm which is able to fairly distribute the shared
service resource to the incoming items.

The sliding-window data stream model is very similar
to a traditional limited-size queue, used frequently in
network routers to buffer packets while they await service.
This is the motivating problem we used to implement
and evaluate our algorithms and data structures. More
generally, however, the problem of finding the heaviest
hitters in a data stream, i.e., the problem of finding which
category of items in a long succession of them are the most
frequent ones, has a number of applications, some of them
quite pervasive. Some applications are in financial data
streams, where it is useful, for example, to know which
stocks are showing the most mobility. Other applications
include sensor networks (for example, helping an intrusion
detection scheme [3]) and filtering sensed data, behaviour

analysis on websites and trend tracking of hot topics (for
example, accurately counting the hottest queries for caching
[4]).

The motivating application, as mentioned, is network
traffic monitoring (and shaping) on Internet routers. Being
able to tell at any moment in time which set of packets is the
most frequent passing through a router (collectively referred
to as a flow of packets) helps in both being able to tell what
may be causing problems and subsequently resolving these
problem in a “fair” manner towards those not contributing
to the problem. In this paper, we specifically address this
issue by implementing the Prince queue policy [1-2]. This
policy has been shown to be able to successfully and fairly
limit aggressive flows which send service requests, in our
case packets, at a rate higher than the fair share they should
request in order not to disadvantage other non-aggressive
flows. To solve this problem we create a data structure and
a set of associated algorithms which operate on it to solve
the heaviest hitters problem on the network router queue.
The basic heaviest hitters problem consists of a data stream
where at each moment in time one item, which belongs
to some itemset, arrives for processing. The goal is to be
able to provide a list of the itemsets whose item counts are
above a given θ threshold. Given the unbounded number
of itemsets and length of the data stream, this cannot be
achieved without unbounded memory. As a result, all of
the proposed solutions for this problem have provided
approximate results.

We address a variant of the basic problem in this work
which stems from the observation that only a section of
the whole history of the data stream may be interesting.
Usually, the most recent items are considered to be more
important. This is one of the most common and arguably
one of the most useful of these variations: finding the
heaviest (and lightest) hitters in a sliding-window data
stream.

In the sliding window model, at each moment in
time the maximum number of items which participate in
a window over the data stream is constant. This window
contains at most the Q most recent items. This scenario
resembles the operation of a queue with an upper limit
on its capacity. As items arrive to be processed they are
inserted at the end of the queue and as items are processed
they are removed from the front of the queue.

*Corresponding author: Remous-Aris Koutsiamanis; E-mail: akoutsia@ee.duth.gr
DOI: 10.6138/JIT.2013.14.1.12

12-Koutsiamanis.indd 117 2013/1/24 下午 12:55:46

Journal of Internet Technology Volume 14 (2013) No.1118

All the algorithms proposed for both the basic problem
and the sliding window variation have in common the
requirement that they be able to operate on-line. This
entails being able to do only one pass over the data, i.e.,
each arriving item may be examined only once by the
algorithm. This is usually called an update operation and
the complexity of this operation must be constant time.
Furthermore, querying for the heaviest hitters must also be
as fast as possible, ideally proportional to the number k of
the heaviest or lightest hitters that we request to be found.

Our algorithm supports the ability:
(1)	 To provide exact results in the query operation and at

the same time maintain constant time update and query
operations.

(2)	 To provide not only the heaviest but also the lightest
hitters in the sliding window with the same performance
and no overhead.
In the following sections we first describe the related

work (Section 2) and then move on to describe the proposed
abstract data type of HL-HITTERS and the building blocks
out of which it is constructed (Section 3). We then describe
the data structure itself and the algorithms which implement
the HL-HITTERS operations. Subsequently, we present
the results of the experimental evaluation of the proposed
solution (Section 4) and discuss its results (Section 5).
Finally, we propose some interesting possible extensions to
this work (Section 6).

2 Related Work

This work merges the results from two separate fields
to achieve our goals. The first field relates to the fair
and balanced distribution of resources (and in this case
specifically network router resources) to competing entities.
In this field, network congestion has been described game-
theoretically by Nagle [5] and the solution put forth used
a market wherein the rules of the game would lead to the
optimal strategy for the individual entities also being the
optimal solution for the system. In a later work, Shenker
[6] describes the relation between the selfish entities and
the switch service mechanisms and proposes a method of
guaranteeing efficient and fair operating points. Since then,
the coordination of Internet entities has been modelled
through various game definitions [7-8]. We use the model
proposed by [1-2] in order to achieve the fair and balanced
distribution of resources.

The second field relates to the heaviest hitters problem
and its solution in a sliding-window data stream context.
This problem was first posed by Moore in 1980 and together
with Boyer they presented the solution (in [9]) for finding
the majority hitter in the basic version of the problem, i.e.,
non-window-based data streams. This problem was studied
and approximate solutions were proposed much later and

concurrently by [10-11]. Since, a significant body of work
has been performed on both the basic problem and on its
numerous variations. A good presentation of this work can
be found in [12-13].

This work builds on our previous effort [14] to
implement an efficient heaviest hitters tracking algorithm
by extending the data structure to handle the tracking of
individual items in the queue, the ability to add a new
tracked item and remove one in constant time. We have also
performed a more extensive evaluation of the performance
of the augmented data structure, improved on the previously
reported performance achieved and verified the fairness of
the rate-limiting algorithm.

3 Proposed Abstract Data Type

In order to provide an accurate description of our
algorithm and the accompanying data structure we describe
here its interface. The abstract data type which we define
supports the operations shown in Table 1. All the operations
in our HL-HITTERS implementation have constant time
complexity.

Table 1 The HL-HITTERS Abstract Data Type

Operation Input Output Description
Initialize - - Initializes the ADT
Append Item - Records a new item

into the counts
Expire Item - Removes an item

from the counts
QueryHeaviest k: Int Array[k] Gets the heaviest-k

ItemSets
QueryLightest k: Int Array[k] Gets the lightest-k

ItemSets
GetOldestItem ItemSet Item Finds oldest item
GetNewestItem ItemSet Item Finds newest item

3.1	 Building Blocks
To implement the data structure we use common basic

building blocks. More specifically, we use exactly one
array of fixed size, multiple doubly linked lists and one
hash table. With each of these data structures we only use
the constant time operations. Thus, for example, we never
iterate over the nodes of the linked list to reach a sought
entry, rather we keep references to the node itself. We will
proceed by describing exactly which operations will be
used on each data structure and its time complexity.
3.1.1 Array

The array must be of size Q, the same as the size of the
window, and its size remains constant during the execution

12-Koutsiamanis.indd 118 2013/1/24 下午 12:55:46

119A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-Window Data Streams

of the algorithm. We only perform the operations Get
and Set on the array, which execute in constant time. The
elements of the array are never iterated over.

In the implementation for our experiments we used
the standard vector provided by the C++ STL (Standard
Template Library) std::vector class.
3.1.2 Doubly-Linked List

The linked lists start out empty and as the algorithm
executes nodes are added and removed. We only use the
Head and Tail fields of the doubly-linked list to access
the respective nodes in constant time. As far as the inserts
and deletes are concerned, they are always executed with
respect to a reference node and as such are constant time
as well. To be more specific, InsertBefore and InsertAfter
require two arguments: the new node to insert and a
reference node before or after which to insert the new node.
Similarly, Delete requires a direct reference to the node
to delete. Furthermore, the maximum number of nodes
is known a priori to be Q, and thus we can eliminate the
overhead of dynamic memory allocation for the nodes by
using a preallocated node pool.

In the implementation for our experiments we used
the a custom doubly-linked list implemented by using the
Boost intrusive list [15] and a simple pool allocator to avoid
all list node memory allocations and deallocations during
the operation of the algorithm.
3.1.3 Hash-Table

In the HL-HITTERS data structure the id of each
itemset with at least one item in the window, is stored in
a dynamic dictionary. A hash-table is used to implement
the dynamic dictionary. Hashing is commonly assumed
to require O(1) amortized time for the operations Get, Set
and Delete or at least for one of these operations. However,
there are at least two examples of hashing schemes which
achieve worst case O(1) time with high probability (whp):
the early work of [16] and the recent algorithm of [17].
Consequently, we can assume that an efficient, O(1)
hashing scheme can be used in the HL-HITTERS data
structure.

There is an additional reason why we can assume
O(1) time for our hashing scheme. Given that our original
motivation were router queues, we can assume that the
maximum size of a window does not typically exceed 1000
items (packets in this case). The most common values are
a few hundred items. This fact admits us the luxury to run
the hashing data structure with a very low load factor. For
example, even a hash table with 1 million entries would not
be a significant cost for a modern router.

Consider the following naive approach with chained
hashing using a uniform hashing function with n hash table
entries, m << n = cm packets, and k, the constant upper
bound on the number of collisions. The probability ρ of

experiencing more than k collisions in any of the n table
entries is

	 � (1)

For n = 106, m = 103 and k = 10 the first inequality
gives that ρ ≤ 2.38 × 10-35. Consider now a router which
serves 109 packets per second (a bit unrealistic today but
allows for future enhancements) and operates continuously
for 20 years. This router can serve not more than Z = 109
× 60 × 60 × 24 × 366 × 20 ≤ 6.34 × 1017 packets during
its lifetime. Even if we consider the case where every one
of these Z packets is unique, i.e., the router never receives
two packets from the same flow and thus maximizes the
potential for collisions to appear, the probability of a “bad”
collision event occurring during its lifetime is ρ * Z ≤ 2.38
× 10-35 × 6.34 × 1017 = 1.51 × 10-17. This probability is
thus practically negligible. Consequently, even the naive
approach seems to meet the requirements for a router. In
addition to this naive implementation there are many, very
efficient, hashing schemes which will perform much better.

Unfortunately, however, in practice a standard cuckoo
hash table occasionally experiences insertion operations
that take significantly more time than the average. The
question of which of the published hashing schemes offers
the optimal trade-off between space redundancy and worst
case bounds could be an interesting problem to investigate.
However, for our purposes, any lightweight hashing
scheme will be sufficient if sufficient memory is provided.
Moreover, for our main motivation application, special
hardware-based memory is available in many routers which
can achieve de-amortized O(1) performance [18].

Based on the above arguments, we plausibly assume
that we can employ an efficient O(1) whp hashing
scheme for our data structure in a modern network router.
Additionally, we believe that the arguments used for the
router case can apply to other applications of window-based
heaviest and lightest hitter problems. In the implementation
used for the experiments of this work, we used chained
hashing provided by the C++ boost::unordered_map class [19].

3.2	 Data Structure
We now proceed to describe how the data structure is

composed out of the basic building blocks. An overview
of the layout used is presented in Figure 1. It should be
noted that the Queue is not part of the HL-HITTERS data
structure itself but is displayed in order to illustrate the
pointers to the items it contains stored in the data structure.

Before proceeding with the description of the data
structure further, we need to describe two types of simple
record-like structures which are used:

12-Koutsiamanis.indd 119 2013/1/24 下午 12:55:46

Journal of Internet Technology Volume 14 (2013) No.1120

yy CountNode, which is the type of the list node used
in the doubly-linked list. The data stored (besides the
Previous and Next fields) is an integer named Count, the
identifier of an ItemSet named ItemSet and a linked list of
references to items in the queue named QItems.
yy CountRange, which has two fields, named First and
Last, both of which are references to a doubly linked list
node of type CountNode. This structure is meant to store
the endpoints of a sub-range of the Counts DLList. To
support this, it supports two simple operations: Insert (a
new node in range) and Remove an existing node from
the range. Both are O(1) operations as they manipulate
only the First and Last fields and do not iterate over the
nodes in the range.

Layout of the Data Structure: Itemsets that have no
items in the window, i.e., a count of zero, will not have
any entries in any of the data structures. Conversely, each
itemset which has at least one item in the window, i.e., a
count ≥ 1, will have one entry in the ItemSets HashTable.
Additionally, for each itemset, there will exist one node of
type CountNode in the Counts DLList, with a Count field
corresponding to its exact count of items in the window and
a QItems field containing pointers to its items in the queue.
Finally, for each group of itemsets which have the same
item count there will be one entry in the Ranges Array,
in the position of the array which is equal to the itemset
group’s count.

3.3	 Algorithms
We now present the operations which are supported

by the data structure using pseudo-code and describe their
operation and computational complexity in detail.

3.3.1 Initialization
The Initialize operation is shown in Algorithm 1.

While its functionality is simply to initialize the ItemSets
hash table, the Counts doubly linked lists and the Ranges
array, it is useful nevertheless to illustrate that initialization
is straightforward and that only memory allocations are
performed. For the DLList, the allocation of the node pool
is also performed here.

Algorithm 1: The Initialize operation
1: procedure Initialize
2: ItemSets ← new HashTable
3: Counts ← new DLList
4: Ranges ← new Array
5: end procedure

3.3.2 Append
In Algorithm 2 we present the Append operation. It

receives the item which is to be appended as a parameter.
The itemset of the item is looked up in the ItemSets hash
table. If it is found, then the itemset is already being
counted, i.e., has other items in the window, and therefore
its count must be increased by one. If not, then it is a new
itemset, i.e., it has no other items in the window, and thus
must be recorded with a count of one and a pointer to item
in the queue has to be stored.

For the case of being already counted, only the Counts
and the Ranges structures will be modified. The idea is to
move the count node corresponding to the itemset to the
position in the Counts linked list where it will be the first
linked list node with the new count. In order to do this, the
count node of the itemset is looked up via the Get operation

Figure 1 The ADT’s Structure

12-Koutsiamanis.indd 120 2013/1/24 下午 12:55:46

121A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-Window Data Streams

on the hash table and a reference to it is stored in cn.
Before removing the cn node from the list, the position in
the linked list where it will be moved to is recorded in cn′,
with help from the Ranges Last field. This will point to the
immediately next linked list node after the last node with
the old count. Subsequently, the count node cn is removed
from the linked list and the corresponding Ranges count
range entry is updated with the Remove operation. Finally,
the cn node is inserted in the linked list before the cn′ node,
the new Ranges count node entry is updated to include it
and a pointer to the item in the queue is pushed at the end
of the QItems queue (in O(1)).

For the case of not being already counted, all of
the structures will be modified. A new count node will
be created to hold the count for the new itemset. Since
allocating a new object on the heap may not be O(1), we
can take advantage of the fact that the maximum number
of itemsets is Q, as explained in Section 3.1.2, and as such
we can just take out a preallocated count node out of a
preallocated pool in O(1). A new DLList is created to store
the pointers to items in the queue which belong to this
itemset and is used in the new count node. This node is then
inserted in the position of the Counts linked list indicated
by the First field in the first count range entry of the Ranges
array and then it is recoded in the same count range entry.
Finally, the itemset hash table is updated by creating an
entry that maps the new itemset to the count node which
was created previously using the Set operation.

3.3.3 Expire
In Algorithm 3 we present the Expire operation. It

receives the item which is to be removed as a parameter.
The item’s itemset is looked up in the ItemSets hash table
via the Get operation and the reference to the count node in
the Counts linked list representing it is stored in cn.

Since the count of the itemset will be decremented by
one, we need to move the cn count node to the position in
the Counts linked list where it will be the first linked list
node with the new (old minus one) count. Similarly to the
Append operation, before removing the cn node from the
list, the position in the linked list where it will be moved
to is recorded in cn′, with help from the Ranges First field.
This will point to the immediately previous linked list
node after the first node with the old count. Subsequently,
the count node cn is removed from the linked list and the
corresponding Ranges count range entry is updated with
the Remove operation. The first item in the count node’s
QItems queue is popped and the count node Count field is
decremented by one. If the count has not reached zero a
check is made to see whether the position to be moved is
valid:

yy The reference in cn′ must be not null, which would
indicate that the previous count range was the first in the
linked list, and
yy The count of the cn′ referenced node must be the same as
the new count of the moving node, i.e., the target count
node must belong to the correct count range.

If this check succeeds, the new corresponding Ranges
count range entry is fetched with the Get operation. Its First
field is set as the new cn′′ insertion position. Afterwards the
moving node is inserted there. If the check fails, then there
is no CountRange entry in the Ranges array corresponding
to the new count and the count node is inserted right where
the original cn′ reference pointed to.

In both cases, the moving count node will be inserted
in the Ranges entry with the new count using the Insert
operation.

If the new count after decrementing by one is zero,
the count node is deleted. Before doing that, the count
node’s QItems DLList is also deleted and returned to the
preallocated pool. If a preallocated pool was used it is
returned to the pool in O(1). Finally, the itemset hash table
is updated by deleting the entry that maps the itemset to the
count node which was previously deleted.
3.3.4 Query

In Algorithm 4 we present the QueryHeaviest and
the QueryLightest operations simultaneously. The basic
algorithm is the same; only the start of the iteration and its
direction is different. In the algorithm, the left side of the
↔ symbol corresponds to the QueryHeaviest operation
while the right side to the QueryLightest operation.

Algorithm 2: The Append operation
1: procedure Append(item: ITEM)
2: itemset ← item.GetItemSet()
3: cn ← cn′← null
4: if itemset ϵ ItemSets then
5: cn ← ItemSets.Get(key:itemset)
6: cn′← Ranges.Get(index:cn.Count).Last.Next
7: Ranges.Remove(node:cn)
8: Counts.Remove(node:cn)
9: cn.Count ← cn.Count + 1
10: cn.QItems.Push(item)
11: Counts.InsertBefore(before:cn′, ins:cn)
12: Ranges.Insert(node:cn)
13: else
14: qi ← new DLLIST
15: qi.Push(item)
16: cn←new
 COUNTNODE (ItemSet:itemset, Count:1,QItems:qi)
17: Counts.InsertBefore(before:Counts.Head, ins:cn)
18: Ranges.Insert(node:cn)
19: ItemSets.Set(key:itemset, value:cn)
20: end if
21: end procedure

12-Koutsiamanis.indd 121 2013/1/24 下午 12:55:47

Journal of Internet Technology Volume 14 (2013) No.1122

The algorithm receives the threshold k as a parameter.
Initially, a new results array of size k is created to hold the
results. In some cases, there may be less than k itemsets
available, therefore a number of positions at the end of the
array will have null entries.

The count node reference cn is set to point to the last (for
QueryHeaviest) or the first (for QueryLightest) node in the
Counts linked list via its Head or Tail fields. Afterwards,
an iteration is performed up to k times. In each step, the
current itemset stored in the node referenced by cn is stored
in the current (the i-th) index of the array. Finally, the result
is returned.

The whole operation makes up to k iterations, at each
one adding a different itemset to the result. This makes this
operation have a time complexity of O(k) and as such is
constant time as well. The operation of the query algorithm
can easily be extended without changing the computational
complexity to also return the actual count of each itemset

along with each itemset. In addition it is possible instead of
specifying a k parameter to return all the itemsets with the
highest/lowest count. To implement this, retrieve the Tail/
Head count node of Counts, get the highest/lowest count,
access the Ranges entry corresponding to that count and get
the range of count nodes between the First and Last fields
with the max/min count. This algorithm’s computational
complexity will depend on the number of itemsets which
will be the max/min count. As it is possible to have Q
itemsets each with a count of one, this algorithm will have
a worst case complexity of O(Q). However, in practice in
many applications this will seldom be the case. Another
extension would be to return the heaviest-θ/lightest-θ
hitters, where θ is relative, expressed as a proportion
of the window size (e.g., θ = 10%). However, here the
QueryHeaviest and the QueryLightest operations will
have different complexities. Since there is an upper bound
on the number of itemsets which can have a frequency
more than or equal to θ equal to 1∕θ, one can just execute
QueryHeaviest with k = 1∕θ and the complexity will be
as originally O(k). However, no such bound exists for the
QueryLightest case, and therefore its worst case complexity
will be O(Q). Finally, if one is willing to accept an O(Q)
worst case complexity it is possible to create cumulative
versions of both the original and the relative version of the
query operations, where the k or θ parameters denote the
cumulative count or proportion of the window. This would
return the first itemset whose counts together add up to the
specified threshold.
3.3.5 GetItem

In Algorithm 5 we present the GetOldestItem and
the GetNewestItem operations simultaneously. The basic
algorithm is the same; only the retrieved end of a queue is
different. In the algorithm, the left side of the ↔ symbol
corresponds to the GetOldestItem operation while the right
side to the GetNewestItem operation.

The algorithm receives the itemset of which the oldest
or newest item in the queue is to be found. Initially, the
count node corresponding to the itemset is retrieved from
the ItemSets hash table. Subsequently, the QItems linked list
in the count node is accessed and depending on whether the
oldest or newest item in the queue is requested, the front or
back item in the queue is returned.

Since no iterations are performed and since only the
first or last item of the linked list QItems is accessed, these
operations are performed in O(1).

Algorithm 3: The Expire operation
1:procedure Expire(item: ITEM)
2: itemset ← item.GetItemSet()
3: cn′′← null
4: cn ← ItemSets.Get(key:itemset)
5: cn′← Ranges.Get(index:cn.Count).First.Previous
6: Ranges.Remove(node:cn)
7: Counts.Remove(node:cn)
8: cn.QItems.Pop(item)
9: cn.Count ← cn.Count - 1
10: if cn.Count ≥ 1 then
11: if cn′≠null and cn′.Count = cn.Count then
12: cn′′← Ranges.Get(index:cn′.Count).First
13: Counts.InsertBefore(before:cn′′, ins:cn)
14: else
15: Counts.InsertAfter(after:cn′, ins:cn)
16: end if
17: Ranges.Insert(node:cn)
18: else
19: delete cn.QItems
20: delete cn
21: ItemSets.Delete(key:itemset)
22: end if
23:end procedure

Algorithm 4: Query Heaviest↔ Lightest operation
1:function QueryHeaviest(k: INTEGER)
2: results ← newARRAY[k]
3: cn ←Counts.Tail ↔Counts.Head
4: i ← 1
5: while i ≤ k and cn ≠ null do
6: results[i] ← cn.ItemSet
7: cn ← cn.Previous ↔cn.Next
8: i ← i+1
9: end while
10: return results
11:end function

Algorithm 5: Get Oldest ↔ Newest Item operation
1:function GetOldestItem(itemset: ITEMSET)
2: cn ← ItemSets.Get(key:itemset)
3: item ← cn.QItems.Front() ↔ cn.QItems.Back()
4: return item
5:end function

12-Koutsiamanis.indd 122 2013/1/24 下午 12:55:47

123A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-Window Data Streams

3.4	 Space Complexity
The space complexity of the HL-HITTERS data

structure can be fully derived and is exclusively dependent
on the maximum window size Q. The ItemSets hash table
contains a maximum of Q entries, the Ranges array has a
constant size of Q entries and the Counts doubly linked list
contains a maximum of Q count nodes. Furthermore, each
node in the doubly linked list Counts, contains QItems, a
linked list of pointers to items in the queue. This linked list
uses a pool of preallocated nodes which is shared between
all the Counts nodes. Since there can only at most Q items
in queue, the preallocated pool of QItems nodes also has a
size of Q. It follows that the space complexity of the whole
HL-HITTERS data structure is O(Q).

4 Results

It is clear from the previous analysis that the
computational complexity of the HL-HITTERS algorithms
presented is overall constant time whp. However, this
does not guarantee an acceptable level of performance
if in practice the constant time required is too high.
We have created a router-like scenario, and have
performed experiments to gauge the actual performance
of the proposed algorithms. We have to note that, to our
knowledge, there exists no other algorithm for calculating
the heaviest-k hitters exactly, which also provides close
to constant time performance. Therefore, we have
implemented a naive but efficient as far as possible
algorithm to find the heaviest-k hitter. This algorithm, each
time the heaviest hitter is requested, creates a hash-table,
and records within it the counts for each itemset. As it does
this, it keeps track of the running heaviest hitter. However,
this algorithm has an O(Qlogk) time complexity, due to the
partial (k-largest) sort needed to find the heaviest-k hitters.
Furthermore, in the experiments performed, we restricted
ourselves to finding the top heaviest hitter only, i.e., k = 1,
in order not to significantly disadvantage the direct counting
algorithm. For reference, the computational complexity of
the operations implemented by the direct counting and the
HL-HITTERS algorithm is presented in Table 2.

Table 2 Computational Complexity

Operation Direct counting HL-Hitters
Initialize O(Q) O(Q)
Append O(1) O(1)
Expire O(1) O(1)

QueryHeaviest O(Qlogk) O(1)
QueryLightest O(Qlogk) O(1)
GetOldestItem O(1) O(1)
GetNewestItem O(1) O(1)

4.1	 Experimental Scenarios
The experimental evaluation of our implementation

is performed in two distinct scenarios. The first scenario
is geared towards evaluating the performance of HL-
HITTERS when the queue is full but experiences no
dropped packets, i.e., the rate of serving packets from the
end of the queue is the same as the rate of arriving packets
at the beginning of the queue. Furthermore, this scenario
seeks to evaluate how much impact querying to find the
heaviest hitter has when it is performed every time a new
packet arrives at the queue, since this is what would happen
in a real application. Finally, it seeks to measure the impact
of tracking the packets which belong to each flow within
the queue. This ability will permit the implementation of
the Prince policy in the second scenario.

The second scenario aims to measure both the
performance and the efficiency of the Prince policy in
contrast to a simple FIFO (DropTail) policy when the
queue is full and experiences dropped packets, i.e., the rate
of serving packets from the end of the queue is higher than
the rate of arriving packets at the beginning of the queue.
In this scenario, we use two groups of flows, normal and
aggressive. The normal flows, which constitute 90% of the
total number of flows never send packets at a rate higher
than their fair share while the aggressive flows (10% of
total flows) always exceed their fair share (within a range of
different amounts). As a result, the queue is overflown and
needs to drop packets. To compare performance, the Prince
policy is implemented by both the naive direct counting
algorithm and HL-HITTERS. We measure the time taken
to service packets as well as how fairly the policies manage
to limit the aggressive flows while not disadvantaging the
normal flows.

4.2	 Experiment Setup
The implementation has been performed using C++,

with standard C++ versions of the building blocks, as
described in Section 3.1. We used the G++ compiler with
all the optimizations enabled (-Ofast) for our specific
architecture. The experiments were executed on an
Intel Quad Core Q9300 processor with 4 GB of main
memory, using one dedicated core for the execution of
the experiments. The operating system used was Arch
Linux, with the 3.0.1 version kernel. For each result point
10 identical sequential executions of the experiment were
performed to remove any bias.

5 Discussion

A selected but representative and indicative of the
worst case performance subset of the experimental results
are presented here. The source code used to perform the
experiments will be available on-line.

12-Koutsiamanis.indd 123 2013/1/24 下午 12:55:47

Journal of Internet Technology Volume 14 (2013) No.1124

5.1	 Scenario 1
The results obtained for the first scenario are

summarized in Figure 2 where the performance of the
direct counting algorithm is compared to the HL-HITTERS
algorithm. When counting only, i.e., just keeping track
of the count of packets of each flow in the queue the
two algorithms perform similarly, whether they also
track the positions of the packets in the queue or not.
This performance is consistent with the theoretical O(1)
complexity given in Table 2 for the Append and Expire
operations. However, when querying to find the heaviest
hitter (k = 1) is introduced (counting needs to be performed
as well since without it querying is not possible), the results
reflect the O(Q) complexity of direct counting and the O(1)
complexity of HL-HITTERS. It is noteworthy to examine
the absolute numbers as well. The HL-HITTERS algorithm
has a maximum processing time per packet of 0.25 μs. This
means that despite using general purpose building blocks
and no hardware-based content addressable memory or
specialized CPUs, we can process at least 4 million packets
per second using our implementation. According to [20] IP
packet sizes vary between 40 bytes and 1,500 bytes, with
strong polarization tendencies. Given those values, we can
achieve a throughput between 1.2 Gbit/sec and 48 Gbit/
sec. We stress the fact that this performance is achievable
without any specialized hardware as would typically exist
in an Internet router. Furthermore, performance profiling
has shown that approximately 50% of the processing time
is spent on the hash-table operations. Since these would
heavily benefit from optimizations on a hardware router,
we are confident that significantly higher performance is
attainable under such conditions.

5.2	 Scenario 2
The results generated from the experiments in the

second scenario are displayed in Figures 3 and 4. Figure 3
shows the results of the comparison between a simple FIFO
DropTail policy (with no packet tracking) and the HL-
HITTERS and direct counting algorithms implementing the
Prince policy with packet tracking. The simple FIFO policy
is the most performant and is not significantly affected
by the increase in total sending rate. The direct counting
algorithm slows down linearly with the increase in sending
rate and scales badly as the queue size used increases. The
loss of performance due to sending rate increase is expected
since the QueryHeaviest operation is executed analogously
more as well. However, the bad scaling in relation to the
queue size leads to unusable performance for a router.
Finally, the HL-HITTERS algorithm also slows down as
the sending rate increases, at a much lower rate, and scales
very well even when the size of the queue is increased. The
absolute numbers show that the HL-HITTERS algorithm
has a maximum processing time per packet of 0.45 μs when
implementing Prince, which as described in the previous
paragraph, would accordingly lead to a throughput between
0.7 Gbit/sec and 26 Gbit/sec.

Figure 4 shows the results of the comparison between
a simple FIFO DropTail policy (with no packet tracking)
and the HL-HITTERS algorithm implementing the Prince
policy with packet tracking. These results show that
although the FIFO policy is very fast, as seen in Figure 3,
it is not able to limit the aggressive players effectively. As
the sending rate of the aggressive players increases and the
total sending rate as a result increases (since the sending
rate of the normal flows is constant) the aggressive players
manage to obtain a much higher portion of throughput in

Figure 2 Scenario 1
Note. Performance of HL-HITTERS vs. direct counting for different Q queue lengths and grouped based on operation performed (counting or counting + querying)
and on whether the packet positions in the queue are tracked. Measured in mean processing time per packet (shown in μs). The maximum time taken by HL-HIT-
TERS is 0.25 μs.

12-Koutsiamanis.indd 124 2013/1/24 下午 12:55:47

125A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-Window Data Streams

respect to the fair share that they should get. For example,
when the aggressive players send 10 times faster than the
normal players the total sending rate becomes 190% of
the service rate and the aggressive players get more than
500% of the fair share while the rest of the 90% of the
flows, the normal flows, all receive 50% of the fair share. In
contrast, using the Prince policy, the aggressive flows only
manage to get 143% of the fair share and as they increase
their sending rate they make themselves clearer targets
for limiting and are limited even more effectively. At the
same time, the lowest share of throughput the normal flows
receive is 95% of the fair share.

6 Conclusion

Our work on the problem of the heaviest-k and
lightest-k hitters in a sliding-window data stream has
resulted in a data structure and an efficient set of algorithms
for its operations. These in tandem allow us to achieve

constant time updates and queries. Building on this feature,
we implement the Prince policy, an effective rate-limiting
mechanism, on a simulated router queue and show that
it is possible to achieve both a highly performance and
extremely fair rate-limiter on a router queue. We have also
shown that the performance achieved is high enough in
absolute numbers to be used in practical applications. We
have attempted to maximize performance on a standard
PC while at the same time have found that using a fairly
standard component in hardware routers can potentially
double performance.

An interesting idea would be to extend this mechanism
to incorporate the size of the packets as well, not only their
number. This would allow us to make decisions based on
the quantity of data that an itemset is responsible for, rather
than how many items it is generating. Another direction
would be to use multiple HL-HITTERS structures in a
queue in parallel, each monitoring a different length of
history. This would allow monitoring not only the highest
hitters currently in the queue but also in longer periods of
time.

Acknowledgements

This research has received funding from the E.U. 7th
Framework Programme (FP7 2007-2013) under grant
agreement no 264226: SPace Internetworking CEnter --
SPICE. This paper reflects only the views of the authors --
The Union is not liable for any use that may be made of the
information contained. We would like to thank Dimitrios
Fotakis for our insightful discussions on efficient hashing.

References

[1]	 Pavlos S. Efraimidis, Lazaros Tsavlidis and George
B. Mertzios, Window-Games between TCP Flows,

Figure 3 Scenario 2
Note. Performance of simple FIFO (no packet tracking) vs. HL-HITTERS and direct counting implementing the Prince policy. Results shown for different Q queue
lengths and number of flows as a function of the total sending rate of the flows vs. the serving rate of the queue. Measured in mean processing time per packet (shown
in μs). The maximum time taken by HL-HITTERS is 0.45 μs.

Figure 4 Scenario 2
Note. Measure of policy fairness for the simple FIFO and the Prince policy.
The ideal received throughput for both aggressive and normal flows is 100%
of their fair share. Here the actual achieved throughput of the aggressive and
normal flows is displayed as a function of the total sending rate of the flows vs.
the serving rate of the queue. Measured in percent of fair share achieved. For
the Prince policy the aggressive flows achieve a maximum of 143% of the fair
share and the normal flows a minimum of 95% of the fair share.

12-Koutsiamanis.indd 125 2013/1/24 下午 12:55:48

Journal of Internet Technology Volume 14 (2013) No.1126

Theoretical Computer Science, Vol.411, No.31-33,
2010, pp.2798-2817.

[2]	 Lazaros Tsavlidis, Pavlos S. Efraimidis and Remous-
Aris Koutsiamanis, Prince: An Effective Router
Mechanism for Networks with Selfish Flows, Journal
of Internet Engineering, in press.

[3]	 Yulia Ponomarchuk and Dae-Wha Seo, Intrusion
Detection Based on Traffic Analysis and Fuzzy
Inference System in Wireless Sensor Networks,
Journal of Convergence, Vol.1, No.1, 2010, pp.35-42.

[4]	 David Dominguez-Sal, Marta Perez-Casany and
Josep Lluis Larriba-Pey, Cooperative Cache Analysis
for Distributed Search Engines, International Journal
of Information Technology, Communications and
Convergence, Vol.1, No.1, 2010, pp.41-65.

[5]	 John Nagle, On Packet Switches with Infinite Storage,
IEEE Transactions on Communications, Vol.35,
No.4, 1987, pp.435-438.

[6]	 Scott J. Shenker, Making Greed Work in Networks:
A Game-Theoretic Analysis of Switch Service
Disciplines, IEEE/ACM Transactions on Networking,
Vol.3, No.6, 1995, pp.819-831.

[7]	 Aditya Akella, Srinivasan Seshan, Richard M.
Karp, Scott Shenker and Christos H. Papadimitriou,
Selfish Behavior and Stability of the Internet: A
Game-Theoretic Analysis of TCP, ACM SIGCOMM
Computer Communication Review, Vol.32, No.4,
2002, pp.117-130.

[8]	 Christos Papadimitriou, Algorithms, Games, and the
Internet, Proc. of STOC ’01, Heraklion, Greece, July,
2001, pp.749-753.

[9]	 Robert S. Boyer and J. Strother Moore, MJRTY
-- A fast majority vote algorithm, February, 1981.
Technical Report 32.

[10]	 Erik D. Demaine, Alejandro Lopez-Ortiz and J. Ian
Munro, Frequency Estimation of Internet Packet
Streams with Limited Space, Proc. of Algorithms-ESA
2002, Rome, Italy, September, 2002, pp.348-360.

[11]	 Richard M. Karp, Scott Shenker and Christos H.
Papadimitriou, A Simple Algorithm for Finding
Frequent Elements in Streams and Bags, ACM
Transactions on Database Systems, Vol.28, No.1,
2003, pp.51-55.

[12]	 Hongyan Liu, Yuan Lin and Jiawei Han, Methods
for Mining Frequent Items in Data Streams: An
Overview, Knowledge and Information Systems,
Vol.26, No.1, 2011, pp.1-30.

[13]	 S. Muthukrishnan, Data Streams: Algorithms and
Applications, Foundations and Trends in Theoretical
Computer Science, Vol.1, No.2, 2005, pp.117-236.

[14]	 Remous-Aris Koutsiamanis and Pavlos S. Efraimidis,
An Exact and O(1) Time Heaviest and Lightest

Hitters Algorithm for Sliding-Window Data Streams,
Proc. of MUE, Loutraki, Greece, June, 2011, pp.89-
94.

[15]	 Olaf Krzikalla and Ion Gaztanaga, Chapter 13. Boost.
Intrusive, 2011, http://www.boost.org/doc/html/
intrusive.html

[16]	 Martin Dietzfelbinger and Friedhelm Meyer auf der
Heide, A New Universal Class of Hash Functions
and Dynamic Hashing in Real Time, Proc. of ICALP,
Warwick University, UK, July, 1990, pp.6-19.

[17]	 Yuriy Arbitman, Moni Naor and Gil Segev, De-
amortized Cuckoo Hashing: Provable Worst-Case
Performance and Experimental Results, Proc. of
ICALP, Rhodes, Greece, July, 2009, pp.107-118.

[18]	 Kostas Pagiamtzis and Ali Sheikholeslami,
Content-Addressable Memory (CAM) Circuits and
Architectures: A Tutorial And Survey, IEEE JSSC,
Vol.41, No.3, 2006, pp.712-727.

[19]	 Daniel James, Chapter 33. Boost.Unordered, 2011,
http://www.boost.org/doc/html/unordered.html

[20]	 Rishi Sinha, Christos Papadopoulos and John
Heidemann, Internet packet size distributions: Some
observations, May, 2007. Technical Report ISI-
TR-2007-643. http://www.isi.edu/~johnh/PAPERS/
Sinha07a/index.html

Biographies

Remous-Ar i s Kouts iamanis i s a
PhD candidate at the Department of
Electrical and Computer Engineering of
the Democritus University of Thrace,
Greece. His main interests reside in
the fields of algorithmic game theory
and streaming algorithms applied to

modelling and solving network congestion problems. He
has received his MSc in Artificial Intelligence from the
University of Edinburgh and his BSc with distinction from
the Department of Computer Science of the University of
Piraeus, Greece.

Pavlos Efraimidis i s an ass is tant
professor in Algorithms at the Department
of Electrical and Computer Engineering
o f t h e D e m o c r i t u s U n i v e r s i t y o f
Thrace, Greece. He received his PhD in
Informatics in 2000 from the University
of Patras under the supervision of Paul

Spirakis. His main work is on algorithms and his current
research interests are in the fields of algorithmic game
theory and algorithmic aspects of privacy.

12-Koutsiamanis.indd 126 2013/1/24 下午 12:55:48

