
Programmable Intelligent Virtual Agents Over Unreal

N. AVRADINIS, A. BELESIOTIS, I. GIANNAKAS, R. KOUTSIAMANIS, K, TILELIS, T. PANAYIOTOPOULOS
Knowledge Engineering Lab, Department of Informatics

University of Piraeus
80 Karaoli & Dimitriou str., Piraeus 18534

GREECE

Abstract: - In this paper we suggest an approach for developing programmable intelligent virtual agents over
Unreal. We propose various techniques for manipulating creating and modifying Unreal Engine’s actors, as
well as a method for developing an additional external controller responsible for intelligent decision making
by creating programmable agents.

Key-Words: - Virtual Agents, Virtual Environments, Task Definition, Planning, Simulation, Programmable
Agents

1 Introduction
Synthetic characters alongside with virtual
environments can be used in dynamic simulations in
order to increase the simulation’s believability. Such
agents should not only be believable but also be
capable of interacting with their environment and
other agents, [1,2,4], and simple to program for
accomplishing numerous tasks. The virtual
environment should aid the agents’ roles and should
be able to adapt to different types of simulations [3].

Previous research efforts in the Knowledge
Engineer Laboratory has shown that it is possible to
develop Intelligent Virtual Agents capable of
exhibiting complex behaviors, either over the
network in a distributed architecture, [1,10], or over
the web, [3], or as a stand-alone application,
[5,7,11]. On the other hand, the Unreal Engine has
been used for interactive storytelling, [9].

In this paper we propose a framework for
developing programmable agents, using the Unreal
Engine for embodying the agents and visualizing the
environment.

The Unreal Engine fulfils most of the
prerequisites stated. It is a freely available, up-to-
date 3D graphics engine, providing character
animation and basic interaction. Moreover, via the
UnrealScript scripting language the engine can be
parameterized and extended to real-time
programmed scenarios.

This paper is structured as follows. In section 2
we present an overview of the agent’s architecture in
Unreal and we discuss the use of UnrealScript. In
section 3, we discuss the possible solutions for
developing programmable agents over Unreal and
we propose our approach. In section 4 we
demonstrate an example of a dynamic simulation.
Finally, in section 5, conclusions along with future
work are discussed.

2 Unreal Actors & Architecture
The Unreal Engine is a general purpose game engine
created by Epic Inc. It consists of a freely available
runtime module that can be used to implement and
visualize 3D virtual environments, as well as a
development platform for map design and script
editing.

The Unreal engine is fully controllable and
extendable by script code written in a proprietary
language, UnrealScript. UnrealScript is an Object
Oriented Programming (OOP) Language with C++
like semantics and syntax offering all the facilities of
OOP languages, like classes and inheritance, but
also implementing a simple state machine and basic
event-driven programming.

It is used to describe the characteristics, the
behavior, the interactions and the appearance of the
virtual environment and its components providing
the developers with a powerful language capable of
manipulating the Unreal Engine.

We have tried to depict the behavioral model of
Unreal Actors as a sense-decide-act loop, which is
achieved by appropriate sensors and effectors. The
real architecture is not known to us in detail, as the
engine it is undocumented, except to the open source
UnrealScript part and a few informal tutorials on the
web. Nevertheless, the proposed approach seems to
fit well to the Engine operation and can be used to
our own research purposes.

Figure1 depicts the architecture of the virtual
agent’s behavioral model. The following definitions
provide an understanding of the terms used.

 An event and sensory stimulus is a cause for
making a decision. Events are triggered by
actions of other agents or the “laws” of the
world.

 A sensor is the means through which the
agent receives the messages of the
environment.

 The state machine is a set of states and the
rules describing the transitions between
them.

 Effectors are the means through which the
agent-decided actions are applied to the
environment or other agents.

Fig.1 Unreal Agent’s Architecture

The agent perceives the environment through the
basic sensors and events provided by the engine.
The messages created are received by the senses of
the agent. For example, a bump on another agent
creates an event triggering a sensor, whereas a
message notifying the agent of the position of a
specific object inside their field of view is a visual
stimulus. Following the reception of the messages,
depending on the current state, a decision for an
action is made. The state machine along with the
incoming messages defines that decision.
The actions are categorized as follows:

 State changing
 Attribute changing
 Sense activating
 Performing

The case of state changing is self explanatory, for
example the transition between idling and
wandering state. Actions can also result in the
altering of an agent’s attributes, which can be best
described as “properties”, for example their location.
An agent can activate one or more senses, for
example, vision. Finally an agent undertakes an
action causing a world event, subsequently
triggering the sensory mechanisms of other agents
[4].

In general the decision making process of
Intelligent Virtual Agents can be categorized as
follows [8]

 Low level behavior
 Non cognitive – affective decision making
 High level decision making

The low level behavior takes into account only the
information that originates from the sensors and
produces reflective reactions, whereas the non
cognitive decision making also receives input from
the agent’s affective state and produces more
“intelligent” reactions. The high level decision
making takes into account agent beliefs, performs
reasoning and planning and in many cases
implements a BDI, i.e. Belief-Desire-Intention,
architecture.

In Unreal, the low level and a small part of non-
cognitive processes has been implemented. There
are no affective states and high level decision
making is not implemented.

Fig.2. General purpose decision mechanism and the
case of Unreal

3 Developing Programmable Agents
Our main goal is to create an agent, whose behavior
can be programmed using AI techniques, thus a

programmable intelligent virtual agent, following
the example of [10,11]

3.1 An UnrealScript Oriented Approach
A first approach suggests implementing the agent
using UnrealScript, either by modifying an already
existing agent, or creating a new one from scratch.

 When modifying an agent, the developer
should at first comprehend the underlying
code of the existing agent. The next step
consists of finding the code segments that
are subject to change and modifying them
accordingly without breaking the existing
code’s consistency.

 When creating a new agent, the developer
should create a low level framework,
describing basic agent components such as
animations, physics and texturing, and
afterwards determine the functionality of
the agent and proceed with the
implementation.

The aforementioned solutions would have been
simple had it not been for:

 Insufficient documentation
 The existing agents’ combat-oriented

behavior
 Increased code complexity and size
 Non readable/modifiable code in the engine
 Lack of utility libraries (e.g. I/O, string

manipulation)
 Lack of direct connectivity with high level

languages used in AI programming (e.g.
Prolog, Lisp)

3.2 An External Controller Approach
The suggested solution is to use a language other
than UnrealScript to implement the agent’s behavior.
The basic concept of such an approach is to utilize
the sensors / effectors of Unreal Actors, i.e. to take
advantage of the unreal environment in order to
receive messages, as well as to visualize the world.
The decision mechanism of the unreal engine is
bypassed, and is handed over to a new application,
the external controller, inspired by the case of DIVA,
[1]. This application can be enhanced via a high
level language such as Prolog, benefiting from its
numerous advantages.

In the unreal part, a framework to handle the
agent and its sensory input is implemented. When a
message of the environment is captured by the
agent’s sensors, the external application is notified.
Information about the type, the time-stamp, as well

as the message itself is passed over. The unreal part
is also capable of receiving messages from the
external controller, which are translated into certain
actions.

The actions of the agent have been broken down
to two main categories, complex and elementary.
The complex actions consist of a series of other
actions, whereas the elementary, when combined,
form a complex action. For example moving to a
specific position is an elementary action, whilst
following a moving object is complex action, as it
can be broken down to several elementary actions,
i.e. moving to different specific positions.

In the external controller, the behavior of the
agent is defined. Based on the incoming messages,
decisions supporting the agents’ goals are made and
actions are undertaken. These are in most cases
high-level and complex and should be analyzed to a
set of elementary actions which are transmitted to
unreal and realized.

The external controller in coordination with the
modified unreal engine provides a framework for
developing programmable agents. The behavior of
agents can be shaped, depending on the concept of a
given simulation.

Fig.3 External-Controller Architecture

4 Illustrative Example
In order to demonstrate the proposed framework, a
simulation has been created. The scenario of the

simulation is the usage of predefined ingredients
found in a kitchen, as instructed in a recipe.

Fig.4 Simulation, Agent Searching For Ingredients

The Unreal Engine displays the virtual
environment, i.e. a kitchen, the agents, i.e. the cook,
handles the senses of the agent and stores
information concerning the objects in use, i.e. the
objects name. The agent senses their environment,
via its sensors. For example it is capable of viewing
the objects and their attributes. The information
received by the agent’s senses, in an appropriate
format, is transmitted to the external controller.

The external controller functions like the “brain”
of the agent. It withholds information concerning the
recipe, such as the ingredients used, their order and
the way they are used. According to the recipe the
agent is guided through the cooking.

5 Conclusions & Future Work
We have presented a framework for the development
of programmable agents and their use in dynamic
simulations over the Unreal Engine.

We are currently trying to apply the framework
to a network-based, multiprocessing, distributed
environment, scaling our architecture. In addition,
we intend to develop more believable and intelligent
agents and employ their use in more demanding
scenarios, [5]. Such scenarios can be behavioral
control in emergency situations or interactive
storytelling [9].

References:
[1] S.Vosinakis,G.Anastassakis, T. Panayiotopoulos,

DIVA: Distributed Intelligent Virtual Agents,
Workshop on Intelligent Virtual Agents, Virtual
Agents 99, The Centre for Virtual Environments,
University of Salford, 1999, pp. 131-134

[2] Michael Wooldridge, An Introduction to Multi-

agent Systems, John Wiley and Sons Ltd, 2002
[3] T. Panayiotopoulos, S. Vosinakis, J. Kalligatsis,

K. Kabassi, Web-Based, Dynamic and Intelligent
Simulation Systems, Intelligent Systems and
Control International Conference (ISC 2000),
Honolulu, Hawaii, USA, August 14-16, 2000,
pp. 398-403.

[4] Gerhard Weiss, Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence,
The MIT Press, 2000

[5] V.S.Belessiotis, S.Vosinakis, T.Panayiotopoulos,
The use of the Virtual Agent SimHuman in the
ISM scenario system, Advances in Automation,
Multimedia and Video Systems, and Modern
Computer Science, V.V. Kluev, C.E.D’Attellis,
N.E. Mastorakis (Eds.), Electrical and Computer
Engineering Series, WSES Press, 2001, pp.97-
101.

[6] Spyros Vosinakis, Themis Panayiotopoulos, A
Task Definition Language for Virtual Agents,
Journal of WSCG, Vol.11, No.3., UNION
Agency, 2003, pp. 512-519.

[7] Spyros Vosinakis, Themis Panayiotopoulos,
Programmable Agent Perception in Intelligent
Virtual Environments, Lecture Notes in Artificial
Intelligence, Vol.2792, Springer, 2003, pp.202-
206.

[8] Nikos Avradinis, Spyros Vosinakis, Themis
Panayiotopoulos, Synthetic Characters with
Emotional States, Lecture Notes in Artificial
Intelligence, Vol.3025, Springer, 2004, pp.505-
514.

[9] Nikos Avradinis, Themis Panayiotopoulos, Ruth
Aylett, Continuous Planning for Virtual
environments, Intelligent Techniques for
Planning, I. Vlachavas, (Ed), Idea Group
Publishing, in press, 2004

[10] George Anastassakis, Themis Panayiotopoulos,
A System for Logic based Intelligent Virtual
Agents, International Journal On Artificial
Intelligence Tools, in press, 2004

[11] Spyros Vosinakis, Themis Panayiotopoulos, A
tool for constructing 3D environments with
Virtual Agents, Multimedia Tools and
Applications Journal, in press, 2004.

